Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract For many pulsars, the scattering structures responsible for scintillation are typically dominated by a single, thin screen along the line of sight, which persists for years or decades. In recent years, an increasing number of doubly lensed events have been observed, where a secondary lens crosses the line of sight. This causes additional or distorted scintillation arcs over timescales ranging from days to months. In this work, we report such a transient event for pulsar B1737+13 and propose a possible lensing geometry including the distance to both lenses and the orientation of the main screen. Using phase retrieval techniques to separate the two lenses in the wavefield, we report the curvature and rate of motion of features associated with the secondary lens as it passed through the line of sight. By fitting the annual variation of the curvature, we report a possible distance and orientation for the main screen. The distance of the secondary lens is found by mapping the secondary feature onto the sky and tracking its position over time for different distances. We validate this method using B0834+06, for which the screen solutions are known through VLBI, and successfully recover the correct solution for the secondary feature. With the identified lensing geometry, we are able to estimate the size of the secondary lens, 1–3 au. Although this is an appropriate size for a structure that could cause an extreme scattering event, we do not have conclusive evidence for or against that possibility.more » « lessFree, publicly-accessible full text available August 29, 2026
-
Abstract The present study compares a single‐band chorus wave against a banded chorus wave observed by Van Allen Probes at adjacent times, and demonstrates that the single‐band chorus wave is associated with an anisotropic electron population over a broad energy range, while the banded chorus wave is accompanied by an electron phase space density plateau and an electron anisotropy reduction around Landau resonant energies. We further compare banded chorus waves with different spectral gap widths, and show that a wider spectral gap is associated with electron isotropization extending to higher energies with respect to the equatorial Landau resonant energy. We suggest that early generated chorus waves isotropize electrons via Landau resonant acceleration, and the waves that propagate to higher latitudes isotropize electrons at higher energies. The isotropization extending to higher energies leads to a larger spectral gap of new chorus waves after electrons bounce back to the equator.more » « less
-
Abstract In extreme scattering events, the brightness of a compact radio source drops significantly, as light is refracted out of the line of sight by foreground plasma lenses. Despite recent efforts, the nature of these lenses has remained a puzzle, because any roughly round lens would be so highly overpressurized relative to the interstellar medium that it could only exist for about a year. This, combined with a lack of constraints on distances and velocities, has led to a plethora of theoretical models. We present observations of a dramatic double-lensing event in pulsar PSR B0834+06 and use a novel phase-retrieval technique to show that the data can be reproduced remarkably well with a two-screen model: one screen with many small lenses and another with a single, strong one. We further show that the latter lens is so strong that it would inevitably cause extreme scattering events. Our observations show that the lens moves slowly and is highly elongated on the sky. If similarly elongated along the line of sight, as would arise naturally from a sheet of plasma viewed nearly edge-on, no large overpressure is required and hence the lens could be long-lived.more » « less
-
Summary A standard unsupervised analysis is to cluster observations into discrete groups using a dissimilarity measure, such as Euclidean distance. If there does not exist a ground-truth label for each observation necessary for external validity metrics, then internal validity metrics, such as the tightness or separation of the clusters, are often used. However, the interpretation of these internal metrics can be problematic when using different dissimilarity measures as they have different magnitudes and ranges of values that they span. To address this problem, previous work introduced the “scale-agnostic” $$G_{+}$$ discordance metric; however, this internal metric is slow to calculate for large data. Furthermore, in the setting of unsupervised clustering with $$k$$ groups, we show that $$G_{+}$$ varies as a function of the proportion of observations assigned to each of the groups (or clusters), referred to as the group balance, which is an undesirable property. To address this problem, we propose a modification of $$G_{+}$$, referred to as $$H_{+}$$, and demonstrate that $$H_{+}$$ does not vary as a function of group balance using a simulation study and with public single-cell RNA-sequencing data. Finally, we provide scalable approaches to estimate $$H_{+}$$, which are available in the $$\mathtt{fasthplus}$$ R package.more » « less
-
Abstract We analyze a magnetotail reconnection onset event on 3 July 2017 that was observed under otherwise quiescent magnetospheric conditions by a fortuitous conjunction of six space and ground‐based observatories. The study investigates the large‐scale coupling of the solar wind–magnetosphere system that precipitated the onset of the magnetotail reconnection, focusing on the processes that thinned and stretched the cross‐tail current layer in the absence of significant flux loading during a 2‐hr‐long preconditioning phase. It is demonstrated with data in the (a) upstream solar wind, (b) at the low‐latitude magnetopause, (c) in the high‐latitude polar cap, and (d) in the magnetotail that the typical picture of solar wind‐driven current sheet thinning via flux loading does not appear relevant for this particular event. We find that the current sheet thinning was, instead, initiated by a transient solar wind pressure pulse and that the current sheet thinning continued even as the magnetotail and solar wind pressures decreased. We suggest that field line curvature‐induced scattering (observed by magnetospheric multiscale) and precipitation (observed by Defense Meteorological Satellite Program) of high‐energy thermal protons may have evacuated plasma sheet thermal energy, which may require a thinning of the plasma sheet to preserve pressure equilibrium with the solar wind.more » « less
-
Chitosan nanofiber membranes are recognized as functional antimicrobial materials, as they can effectively provide a barrier that guides tissue growth and supports healing. Methods to stabilize nanofibers in aqueous solutions include acylation with fatty acids. Modification with fatty acids that also have antimicrobial and biofilm-resistant properties may be particularly beneficial in tissue regeneration applications. This study investigated the ability to customize the fatty acid attachment by acyl chlorides to include antimicrobial 2-decenoic acid. Synthesis of 2-decenoyl chloride was followed by acylation of electrospun chitosan membranes in pyridine. Physicochemical properties were characterized through scanning electron microscopy, FTIR, contact angle, and thermogravimetric analysis. The ability of membranes to resist biofilm formation by S. aureus and P. aeruginosa was evaluated by direct inoculation. Cytocompatibility was evaluated by adding membranes to cultures of NIH3T3 fibroblast cells. Acylation with chlorides stabilized nanofibers in aqueous media without significant swelling of fibers and increased hydrophobicity of the membranes. Acyl-modified membranes reduced both S. aureus and P.aeruginosa bacterial biofilm formation on membrane while also supporting fibroblast growth. Acylated chitosan membranes may be useful as wound dressings, guided regeneration scaffolds, local drug delivery, or filtration.more » « less
-
Abstract Understanding local loss processes in Earth’s radiation belts is critical to understanding their overall structure. Electromagnetic ion cyclotron waves can cause rapid loss of multi‐MeV electrons in the radiation belts. These loss effects have been observed at a range ofL* values, recently as low asL* = 3.5. Here, we present a case study of an event where a local minimum develops in multi‐MeV electron phase space density (PSD) nearL* = 3.5 and evaluate the possibility of electromagnetic ion cyclotron (EMIC) waves in contributing to the observed loss feature. Signatures of EMIC waves are shown including rapid local loss and pitch angle bite outs. Analysis of the wave power spectral density during the event shows EMIC wave occurrence at higherL* values. Using representative wave parameters, we calculate minimum resonant energies, diffusion coefficients, and simulate the evolution of electron PSD during this event. From these results, we find that O+ band EMIC waves could be contributing to the local loss feature during this event. O+ band EMIC waves are uncommon, but do occur in theseL* ranges, and therefore may be a significant driver of radiation belt dynamics under certain preconditioning of the radiation belts.more » « less
-
Abstract The present study uncovers the fine structures of magnetosonic waves by investigating the EFW waveforms measured by Van Allen Probes. We show that each harmonic of the magnetosonic wave may consist of a series of elementary rising‐tone emissions, implying a nonlinear mechanism for the wave generation. By investigating an elementary rising‐tone magnetosonic wave that spans a wide frequency range, we show that the frequency sweep rate is likely proportional to the wave frequency. We studied compound rising‐tone magnetosonic waves, and found that they typically consist of multiple harmonics in the source region, and may gradually become continuous in frequency as they propagate away from source. Both elementary and compound rising‐tone magnetosonic waves last for ∼1 min which is close to the bounce period of the ring proton distribution, but their relation is not fully understood.more » « less
An official website of the United States government
